Урок №8 — Начинаем изучать инфракрасный датчик

Введение:

Инфракрасный датчик входит домашнюю версию набора Lego mindstorms EV3. Это единственный датчик, который может применяться как самостоятельно, так и в паре с инфракрасным маяком, тоже являющимся частью домашнего набора. Следующие два урока мы посвятим изучению  этих двух устройств, а также их взаимодействию между собой.

8.1. Изучаем инфракрасный датчик и инфракрасный маяк

Инфракрасный датчик (Рис. 1) в своей работе использует световые волны, невидимые человеку — инфракрасные волны*. Такие же волны используют, например, дистанционные пульты управления различной современной бытовой техникой (телевизорами, видео и музыкальными устройствами). Инфракрасный датчик в режиме «Приближение» самостоятельно посылает инфракрасные волны и, поймав отраженный сигнал, определяет наличие препятствия перед собой. Еще два режима работы инфракрасный датчик реализует в паре с инфракрасным маяком (Рис. 2). В режиме «Удаленный» инфракрасный датчик умеет определять нажатия кнопок инфракрасного маяка, что позволяет организовать дистанционное управление роботом. В режиме «Маяк» инфракрасный маяк посылает постоянные сигналы, по которым инфракрасный датчик может определять примерное направление и удаленность маяка, что позволяет запрограммировать робота таким образом, чтобы он всегда следовал в сторону инфракрасного маяка. Перед использованием инфракрасного маяка в него необходимо установить две батарейки AAA. 

Инфракрасный датчик

Рис. 1

Инфракрасный маяк

Рис. 2

8.2. Инфракрасный датчик. Режим «Приближение»

Этот режим работы инфракрасного датчика похож на режим определения расстояния ультразвуковым датчиком. Разница кроется в природе световых волн: если звуковые волны отражаются от большинства материалов практически без затухания, то на отражение световых волн влияют не только материалы, но и цвет поверхности. Темные цвета в отличие от светлых сильнее поглощают световой поток, что влияет на работу инфракрасного датчика. Диапазон работы инфракрасного датчика также отличается от ультразвукового — датчик показывает значения в пределах от 0 (предмет находится очень близко) до 100(предмет находится далеко или не обнаружен). Еще раз подчеркнем: инфракрасный датчик нельзя использовать для определения точного расстояния до объекта, так как на его показания в режиме «Приближение» оказывает влияние цвет поверхности исследуемого предмета. В свою очередь это свойство можно использовать для различия светлых и темных объектов, находящихся на равном расстоянии до робота. С задачей же определения препятствия перед собой инфракрасный датчик справляется вполне успешно.

Решим практическую задачу, похожую на Задачу №14 Урока №7, но, чтобы не повторяться, усложним условие дополнительными требованиями.

Задача №17: написать программу прямолинейно движущегося робота, останавливающегося перед стеной или препятствием, отъезжающего немного назад, поворачивающего на 90 градусов и продолжающего движение до следующего препятствия.

У робота, собранного по инструкции small-robot-31313, впереди по ходу движения установлен инфракрасный датчик. Соединим его кабелем с портом «3» модуля EV3 и приступим к созданию программы.

Рассмотрим программный блок «Ожидание» Оранжевой палитры, переключив его в Режим: «Инфракрасный датчик» — «Сравнение» — «Приближение» (Рис. 3). В этом режиме программный блок «Ожидание» имеет два входных параметра: «Тип сравнения» и «Пороговое значение». Настраивать эти параметры мы уже умеем.

Блок "Ожидание". Инфракрасный датчик.

Рис. 3

Решение:

  1. Начать прямолинейное движение вперед
  2. Ждать, пока пороговое значение инфракрасного датчика станет меньше 20
  3. Прекратить движение вперед
  4. Отъехать назад на 1 оборот двигателей
  5. Повернуть вправо на 90 градусов (воспользовавшись знаниями Урока №3, рассчитайте необходимый угол поворота моторов)
  6. Продолжить выполнение пунктов 1 — 5 в бесконечном цикле.

Попробуйте решить Задачу № 17 самостоятельно, не подглядывая в решение.

Решение Задачи №17

А теперь для закрепления материала попробуйте адаптировать решение Задачи №15 Урока №7 к использованию инфракрасного датчика! Получилось? Поделитесь впечатлениями в комментарии к уроку…

8.3. Дистанционное управление роботом с помощью инфракрасного маяка

Инфракрасный маяк, входящий в домашнюю версию конструктора Lego mindstorms EV3, в паре с инфракрасным датчиком позволяет реализовать дистанционное управление роботом. Познакомимся с маяком поближе:

  1. Пользуясь инфракрасным маяком, направляйте передатчик сигнала (Рис. 5 поз. 1) в сторону робота. Между маяком и роботом должны отсутствовать любые препятствия! Благодаря широкому углу обзора инфракрасный датчик уверено принимает сигналы, даже если маяк располагается позади робота!
  2. На корпусе маяка расположены 5 серых кнопок (Рис. 5 поз. 2), нажатия которых распознает инфракрасный датчик, и передает коды нажатий в программу, управляющую роботом.
  3. С помощью специального красного переключателя (Рис. 5 поз. 3) можно выбрать один из четырех каналов для связи маяка и датчика. Сделано это для того, чтобы в непосредственной близости можно было управлять несколькими роботами.  

Инфракрасный маяк

Рис. 5

Задача №18: написать программу дистанционного управления роботом с помощью инфракрасного маяка.

Мы уже знаем, что для реализации возможности выбора выполняющихся блоков необходимо воспользоваться программным блоком «Переключатель» Оранжевой палитры. Установим режим работы блока «Переключатель» в «Инфракрасный датчик» — «Измерение» — «Удалённый» (Рис. 6)

Блок "Переключатель". Инфракрасный датчик

Рис. 6

Для активации связи между инфракрасным датчиком и маяком необходимо установить правильное значение параметра «Канал» (Рис. 7 поз. 1) в соответствии с выбранным каналом на маяке! Каждому программному контейнеру блока «Переключатель» необходимо сопоставить один из возможных вариантов нажатия серых клавиш (Рис. 7 поз. 2). Заметьте: некоторые варианты включают одновременное нажатие двух клавиш (нажатые клавиши помечены красным цветом). Всего в программном блоке «Переключатель» в этом режиме можно обрабатывать до 12 различающихся условий (одно из условий должно быть выбрано условием по умолчанию). Добавляются программные контейнеры в блок «Переключатель» нажатием на «+» (Рис. 7 поз.3).

Настройки блока "Переключатель"

Рис. 7

Предлагаем реализовать следующий алгоритм управления роботом:

  • Нажатие верхней левой кнопки включает вращение левого мотора, робот поворачивает вправо (Рис. 7 поз. 2 значение: 1)
  • Нажатие верхней правой кнопки включает вращение правого мотора, робот поворачивает влево (Рис. 7 поз. 2 значение: 3)
  • Одновременное нажатие верхних левой и правой кнопок включает одновременное вращение вперед левого и правого мотора, робот двигается вперед прямолинейно (Рис. 7 поз. 2 значение: 5)
  • Одновременное нажатие нижних левой и правой кнопок включает одновременное вращение назад левого и правого мотора, робот двигается назад прямолинейно (Рис. 7 поз. 2 значение: 8)
  • Если не нажата ни одна кнопка маяка — робот останавливается (Рис. 7 поз. 2 значение: 0).

При разработке алгоритма дистанционного управления вы должны знать следующее: когда нажата одна из комбинаций серых кнопок — инфракрасный маяк непрерывно посылает соответствующий сигнал, если кнопки отпущены, то отправка сигнала прекращается. Исключение составляет отдельная горизонтальная серая кнопка (Рис. 7 поз 2 значение: 9). Эта кнопка имеет два состояния: «ВКЛ» — «ВЫКЛ». Во включенном состоянии маяк продолжает посылать сигнал, даже если вы отпустите кнопку (о чём сигнализирует загорающийся зеленый светодиод), чтобы выключить отправку сигнала в этом режиме — нажмите горизонтальную серую кнопку еще раз.

Приступим к реализации программы:

Наш алгоритм дистанционного управления предусматривает 5 вариантов поведения, соответственно наш программный блок «Переключатель» будет состоять из пяти программных контейнеров. Займемся их настройкой.

  1. Вариантом по умолчанию назначим вариант, когда не нажата ни одна кнопка (Рис. 7 поз. 2 значение: 0). Установим в контейнер программный блок «Независимое управление моторами», выключающий моторы «B» и «C».
  2. В контейнер варианта нажатия верхней левой кнопки (Рис. 7 поз. 2 значение: 1) установим программный блок «Большой мотор», включающий мотор «B».
  3. В контейнер варианта нажатия верхней правой кнопки (Рис. 7 поз. 2 значение: 3) установим программный блок «Большой мотор», включающий мотор «C».
  4. В контейнер варианта одновременного нажатия верхних левой и правой кнопок (Рис. 7 поз. 2 значение: 5) установим программный блок «Независимое управление моторами», включающий вращение моторов «B» и «C» вперед.
  5. В контейнер варианта одновременного нажатия нижних левой и правой кнопок (Рис. 7 поз. 2 значение: 8) установим программный блок «Независимое управление моторами», включающий вращение моторов «B» и «C» назад.
  6. Поместим наш настроенный программный блок «Переключатель» внутрь программного блока «Цикл».

По предложенной схеме попробуйте создать программу самостоятельно, не подглядывая в решение! 

Решение Задачи №18

Решение Задачи №18

Рис. 8

Загрузите получившуюся программу в робота и запустите её на выполнение. Попробуйте управлять роботом с помощью инфракрасного маяка. Всё ли у вас получилось? Понятен ли вам принцип реализации дистанционного управления? Попробуйте реализовать дополнительные варианты управления. Напишите свои впечатления в комментарии к этому уроку.


* Хотите увидеть невидимые волны? Включите режим фотосъемки в мобильном телефоне и поднесите излучающий элемент дистанционного пульта от телевизора к объективу мобильного телефона. Нажимайте кнопки пульта дистанционного управления и на экране телефона наблюдайте свечение инфракрасных волн.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *